
We examine the analog of Lamb’s solution for the semi-infinite plane cut. 
We assume that an elastic homogeneous and isotropic body, occupying the 
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exterior of the cut Y = 0,~ < 0, is at rest at the beginning. At the initial ins- 
tant t = 0 an instantaneous concentrated impulse P is acting at both edges 

of the cut at the point of coordinate r = --1 . This problem, with mixed bound- 

ary conditions on the semiplane, is solved by the Wiener-Hopf method. First 
we construct the solution for the similar stationary case, and then, on the basis 

of this, the solution of the nonstationary problem. By using the latter solution 
as Green’s function, we construct the solution of the more general dynamic 

problem with arbitrary load distribution along the gap. 

1. The ctationrry problem. We consider a stationary wave process in the 
plane %Y, assuming that the physical quantities are specified in the form f (2, y) exp 

(--iot),where f (2, y)is some function, o is the frequency of the oscillations, and t is 
time. The equations of the dynamic elasticity theory have the form 

A@ + k,‘cD = 0, A’4 + k,T = 0 (1.1) 

Here 0 (z, Y) and Y (z, y) are the potentials of the longitudinal and transversal waves, 
It1 and k, are the wave numbers, A is the Laplace operator and 2, Y are rectangular 

Cartesian coordinates. The components of the stress tensor and the displacement vector 
are expressed in terms of the wave potentials CD (z, Y) and Y (r, Y) in the following man- 
ner : % -=- 

2p 

(I .2) 

a0 aY 
V=ay-az 

Here oy and ‘G,.~ are stresses, v is the component of the displacement along the Y-axis, 
and p is the shear modulus (the factor exp (--iot) in the formulas (1.2) is omitted). 

We consider the following singular boundary value problem for the semi-infinite cut : 

Gy = - P6 (5 + 1) exp (- iot) for y=O, s<O 

v=o for y=O, z>O (1.3) 
t -0 xll - for Y =O, -w<s<cu 

ct, = 0 (r”Z), Y = 0 (r”‘) for r= v--O 

(the condition on the edge [l. ;?I). Here 6 (2) is Dirac’s delta function. The problem 
is considered to be symmetric with respect to the z-axis. 
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Following [2], we seek the solution of the problem in the form 
00 

Here R (A) is the known function ; the function fp - A’ , analytic in the complex 

plane 2 with two semi-infinite cuts (-00, -k) and fk, oc) along the real axis, is view- 

ed as the branch of this function, real and positive for --k < h < k, i.e. positive ima- 
ginary at the upper edge of the left cut and at the lower edge of the right cut. The inte- 

gration contour for (1.4) is shown in Fig. 1. 

Fig. 1 

The solution in the form (1.4) satisfies the wave equation (1.1) and the boundary con- 

dition zzy = 0 for y = 0. The remaining boundary conditions and the condition on the 

edge determine the function 1( (h). Substituting (1.4) into (1.2), we obtain (for Y = 0) 

cn CJ 
% -_ 
2P - 5 

X (A) il (A) eih5dh, v = c R (?v) B (h) eiAsdh (2.5) 
--“La 

A ;;= h” T/(k? - h’J) (k$ - AZ) + (‘/zka” _ x2)2 

3 (A) = - l,lpik22 I/hi2 - A2 

Applying the inverse Fourier transform to the relations (1.5), we obtain 

-ih*dx = Cl+ (k) + Q- (A) 

1 
B (A) R (W = ;2n s (4,_oe-i’zds = V+ (A) + V- (I.) (1.6) 

--m 0 

0 
1 

v*(h)= 2n 
c -r& 

(v)y=oe-'"rdz, 1-'" (I,) = -&i (r)y+,e-i”rdz 

where the desired functions Q-(A) and Vi(&) are analytic in the upper and lower half- 
plane of the complex variable h , respectively. According to the boundary conditions 

(1.3). we have 
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*+(A)=--&- eihz, P (a) = 0 (1.7) 

Substituting (1.7) into (1.6) and eliminating R (X), we arrive at the following Wiener- 
Hopf functional equation : 

i(i-s) - 
peiAl 

vka” - K F (I.) I’+ (A) = Q- (I,) - - 
4w 

2 +- k$. - A.2 
a 

’ (‘) = kaa - k? [ ” + 
( 

) I )/(k12 _ j,a) (kaa - ~a) 
(1.8) 

The functions F (A) and l/kz’ - Aa are represented in the form 

F (A) = F+ (h) F- (A), vke” - ha = v/kn v/ka (1.9) 

where the functions F+(h) and F-(h) are analytic and different from zero in the half- 

planes . Im A>0 and Im I<0 , respectively. Due to the choice of the branch of the 

function vk&- Aa and of the contour which separates the lower and the upper half- -- 
planes of the h-plane, 1/ ka f h is an analytic function in the upper half-plane (cut 

along y = 0, -kl > I. > -CO), while vka - h in the lower half-plane (cut along 
y = 0, 00 > h > 4). We make use of the result concerning the factorization of the 
function F (A), given in [3] 

?%*A 
Tkz 

1 
F%)= ka&k OxI’ 7 I 5 

arctg 
( 

$ ks2 - 42 
) 

2 

de 

+kl 
E’ I/(e” _ kl”) (,@ _ 4’) E - k 1 (1.1C) 

(AR = d$’ cR < cd 

Here cR is the propagation velocity of the Raleigh surface waves ; we take, simultane- 
ously, either the upper or the lower signs. Taking into account the factorization, the 
Wiener-Hopf equation (1.8) can be written in the form 

In order to apply the standard Wiener-Hopf technique to the Eq. (1.11). it is necessary 
to transform the second term in the right-hand side, since this term represents a diver- 

gent wave at infinity for Im h < 0. The function F-(h) Jfka - h has a zero at h = hn 
and a branch point at h = 4. In addition, because of the behavior of the integral of 

Cauchy type at the extremities of the integration contour [4], the function is regular for 
I = ka. The equation (1.11). after the transformation of the second term in the right- 
hand side, obtains the form 
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a (h) = / kz - h - - 

1/ (h - h) (h - AR) 
[l/k--hR (V/h--1- l/ip-q- (1.12) 

P (A) = 1/ (kz - h) (h, - kl) 

a- kl 

The left-hand side of this equation represents a function which is analytic in the upper 

half-plane of the h-plane, while the right-hand side represents a function which is ana- 
lytic in the lower half-plane. According to the principle of analytic continuation we 

can assert that the left-hand and the right-hand sides of this equation are analytic func- 
tions, each the continuation of the other. It remains to elucidate the behavior of the so 

determined function, analytic in the entire plane A, at the point at infinity. Making use 
of an Abelian type theorem [5] and of the condition on the edge (Q = 0 (rajz), Y = 
0 (+I’) for r = i/g + ya + 0), it is easy to show that the analytic function tends to zero 

at infinity. Then, by virtue of Liouville’s theorem, it is identically zero in the entire 
plane b. Thus, we obtain Q-(h), P(L). With the aid of the Fourier transform, we res- 
tore the stress ur, at the continuation of the cut and the displacement v of its edges, 

corresponding to the initial boundary value problem 

G,=-P6(t+z)+& _h v&a [a (h) eikl’ + p (h) e s ihRZ 
] eihx dh (1.13) 

00 
iP . 

a 

1 
’ = 4np (1 - k12 / k$) _-m F (A) (kz - A) m 

[eihl I/&-x - 

u p,) eW _ p (a) eihRr I ei).“da (1.14) 

We determine the stress intensity factor K which presents a fundamental interest in 

fracture mechanics. Making use of the condition at the end of the crack 

by== Kl j/2nx for z-,-to 

we have 
1 y Gy 

n- (h) = 2n 
a( i 2cL +oe 

-ihs dx = R ._ ,-i;:! 4 p#/2 

4flP V2 
(1.15) 

0 

In this connection we consider that h tends to infinity remaining in the lower half- 

plane. On the other hand, for h + 00 we obtain 

vcz (cl - CR) - VCR (cl - Ca) 

l/C1(ca_cR) ] 

(1.16) 

Taking into account the previously omitted experimental factor, from formulas (1.15), 
(1.16) we finally obtain 
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K = Re [x(a) eeiot] = - P fll Re [(I + i) (iMeikl’ + NeihBz) e-““‘1 (2.17) 

2. The non#trtionrry problem. The stress intensity factor at the vertex of 

the crack for the nonstationary case is computed with the formula @] 

1 y 
K (t) = 2n Re 

II\ 
Z (0) eeiot dw 1 (2.1) --aD 

Here the function z (0) is given by the formula (1.17). Substituting (1.17) into (2.1) 

and evaluating the integral, we obtain 

K (t) = - ‘Q 
(t - l/ Cl) 

,,, for t > -& 

K (t) = 0 for 

(Q=M/JfG) 

(2.2) 

Considering the obtained result as a Green’s function, we find the stress intensity factor 
in the case of an arbitrary distribution of the load on the gap 

(2.3) 

3. Exrmplen. 1. Assume that the function p (z, t) has the form 

p (2, t) = -P6 (I - 1) H (t) (3.1) 

Here H (t) is the Heaviside unit function, 6 (5) is Dirac’s delta function and P is some 

constant. The solution of this self-similar problem, according to (2.3), is 

2J’Q 

K w = - (t - I/ c1)‘/, 
(3.2) 

In particular, for 1-O we have 2PQ K(t) zz - - 
I/t 

(3.3) 

This solution coincides with the solution given in [S], if in the latter we set c --* 0, T = 

--P, where c is the crack propagation rate. 
2. Assume that the load is given in the form 

Fig. 2 
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P (2, t) = 
- PH (t) for 11 < z < la 

0 for 2 < II, x > I* 
(3.4) 

This is also a self-similar problem and it has the following solution: 

K(t) = - 4clQP Re [r/t - 11/ CI - v/t - 12 /cl] (3.5) 

It follows from (3.5) that for 11/ cl < t < 1s. / R , the stress intensity factor is directly 

proportional to (t - I1 / cl)“z, while for t > Zs / cl it is directly proportional to 

(‘f/t---IIIcl - Y’t--&/c1). 

The graph of the function Y = Re (vi - II I CI - v’t --t2 / C$ is given in Fig. 2. 
3. For the function p (z, t) of the form 

for h < z < Es 

for z < Es, 5 > EB (3.6) 

the solution, according to the general formula 12.3), is 

K (t) = - 2crPQ Re 
‘I/t -lI7/c1- Jft - II/C, 

I/p - h/Cl) (t - 1‘2 I cl) I 
(3.7) 

The author wishes to thank G. P,Cherepanov for formulation of the problem and for 
his constant interest in the paper. 
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